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UNSTEADY TURBULENT BOUNDARY-LAYER ANALYSIS 

BY 
R. E. Singleton*, J. F. Nash*, L. W. Cart**, 

m d V .  C. Patel*** 

Lockheed-Georgia Company 

+* U.S. Army Air Mobility Research and Development Laboratory, 
Ames Directorate 

*** Institute of Hydraulic ksearch, The University of Iowa 

SUMMARY 

The governing equations for an unsteady turbulent boundary toyer on a swept infinite 

cylinder, composed of a continuity equation, a pair of momentum equations and a pair 

of turbulent energy equotions which 

numerically. An explicit finite difference analog to the partial differential equations 

include upstream history efforts, are solved 

i s  formulated and developed inio a computer program. Calculations were made for a 

variety of unsteady flows in both two and three *.:i:.--.rsions but primarily for two 

dimensional flow fields in order to first understand some of the fundamental physical 

aspects of i..isteady turbulent boundary layers. Oscillating free stream flows without 

pressure gradient, oscillating retarded free stream f lows  m d  monotonically time-varying 

flows have al l  three been studied for a wide frequency range. It was found that to the 

lowest frequency considered, the lower frequency hound being determined by economic 

consiaerations (machine time), there weresiqnifkant *.T ,teady effects 06 the tuhulent 

boundary layer. 
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The expected phase shifts in wall shear stress and displacement thickness were found, 

as observed by other investigators. Besides the indirect effect of unsteadiness via the 

pressure gradient, the turbulent boundary layer i s  apparently affected airectly by the 

unsteadiness. This effect is clear!y seen in flows approaching zero wall shear stress 

conditions. Unsteady turbulent boundary layers were able to penetrate deeper into 

the adverse pressure gradient whether or not the pressure gradient was alleviated by 

unsteady free stream effects (i.e., onset of zero wall shear stress was delayed in either 

case compared to quasi-steady turbulent boundary layers). For some flow cases, the 

differences were quite large at high frequencies. The unsteady displccement thickness 

and wall shear stress approached the zero wall shear stress condition quite differently 

from the approach of the corresponding quasi-steady values to separation (i.e. no 

singular behavior was apparent in the unsteady case). For the oscillatory flow cases 

considered, the quasi-steady wall shear stress values were a good approximation to the 

corresponding unsteady values for the entire frequency range considered, provided the 

flow was nowhere close to zero wall shear stress conditions. For these same frequency 

ranges, the same cannot be said of Hie displacement thickness values, however. The 

displacement thickness was not represented well by the quasi-steady model even at 

relative ly low ltequenc ies. 



INTRODUCTION 

Time-dependence i s  a conspicious feature of the flow over a helicopter rotor in 

translating motion, and it has l o r j  been suspected that the effects of time-dependence 

might play an important role in the development of the boundary-layer on such a rotor. 

This suspicion was heightened when it was found (ref. 1) t k t  quasi-steady calculations 

of the boundary-layer development indicated gross separation over nearly one-half of the 

blade disc of a rotor which was known, from experiment, to be unstalled. Although the 

pessimistic outcome of these calculatiors could not unquestionably be attributed to 

unsteadiness i n  the boundary-layer, it was clear that a study of the effects of time- 

dependence was urgently needed in order to help isolate the important ingredients of 

this area of rotor aerodynamics. 

The study of the unsteady turbulent boundary-layer is, of course, important i n  a wider 

context too. Dynamic stall affects, not only helicopter rotors, but also the blades of 

turbines and compressors, and the aerodyncrnic surfaces of aircraft in maneuvering flist-t. 

Finally, but aot of least significance, the subject i s  of substantial -undomental interest, 

and a greater understanding of i t  can be expected to assist indirectly in the understanding 

of a much wider range of boundary-layer flows. 

The subject of unsteady boundary layers i s  in i t s  infancy, and the subject of umteody 

turbulent boundary layers was virtually untouched until the last three or four years. 

Since then the differential method of Patel and Narh (ref. 2), and the integral method 
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of McDonald and Shamroth (ref. 3), for calculating two-dimensional flows with both 

spacial and temporal variations, have been published. A few other methods lrave also 

appeared which treat only tempomlly-varying flows (refs. 4, 5). 

One objective of this work was to develop further the method of Patei and Nosh, 7r.d 

extend :t to infinite-yawad-cylinder flows as well as two-dimensional flows. A few 

calculations have been done using this new capability. The second objective wos to 

perform numerical experiments to explore some of the properties of time-dependent 

tuibulent boundary layers, especially those which relate to unsteady separation and 

dynamic stall. Within the scope of this latter objective i t  was considered important to 

try to determine the range of validity of quasi-steady methods. Tirne-dependent 

calculations are more difficult to perform ana are more expensive to perform than 

steady ones, and it i s  helpful to know the point, in  term: of increasing unsteadiness of 

the flow, beyond which the added complexity and expense have to be incurred in order 

to  obtain useful results. 
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DCSCRIPTION OF THE METhOD 

Nature ot the Flow Considered 

The method i s  designed to calculate the timc-depende,it, incompressible, turbulent 

layer on an infinite yawed cyclinder. Cartesian coordinates are placed on the 

developed surface of the cylinder (whose radius of curvature i s  assumed to be every- 

where large cornparc with the local boundary-layer thickness); x i s  measured normal 

to the generators, y normal to the surface, and z along the generators. 

The velocities in the x-, y-, and z- directions are expressed in  the form U +  u, V f v, 

W + w, respectively, where U, V, W, u, v, w are al l  functions of x, y and t. They 

are not functions of z because the flow i s  assumed to be invariant in  the direction 

parallel to the generators of the cylinder (ref. 6). The zomponents of velocity U (x,y,t) 

V(X, y, t), W(x, y, 't) are defined 1 s  ensemble averages, Oakrn over a 

large number of realizations of the same basic flow, or successive flows with the same 

time-history and the same boundary conditions, e.g. successive cycles of a stable 

oscillatory flow. The components u, v, w represent the mndom fluctuations about U, 

V, W, and by implication the ensemble averages of u, v, w are identically zero. 

Governing Equations 

The equations of i: tion for a flow of the type described above can be derived from the 

time-dependent Navier-Stokes equations by replacing the three velocity components by 
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U + U, V + V, W + w (as defined above) and forming the ensemble average of the 

resulting set. Introduction of the boundary-layer approxk*ations, and restriction to 

flows with zero z- derivatives, then yields the two momentum equations for 1’ arid W 

together with the statement that the pressure i s  constent through the boundary layer. 

In the two momentum equaticns, uv, vw are the ensemble averages of the products 
-- 

uv, vw, respectively, ond have essentially the same meaning as the Reynolds stresses 

appearing in  the steady turbulent boundary-loyer equations. Thus the shear stresses 

T~ T, are given by t =-p W andTzr-p 
X 

The continuity equation retains i t s  usual form 

au av = o  
a x  a~ -- + - 

The above equations are identical to the ones that would have been derived i f  U, V, 

W had been specified as time averages. However, in order to define time averages, i t  

i s  necessary to m k e  the stipulation that the time scale of the turbulent motion i s  short 

compared wi th  the time scale of the motion as a whole (ref. 3). A number of flows ol‘ 

practical interest involve unsteadiness of the boundary conditions which i s  too rapid 

for an adequate distinction to be made, particularly when due attention i s  paid to the 

importance of the large-eddy motions in the boundary layer. These motions can have 

a time scale comparable to the time taken for a particle to be convected a distance 

many times the boundary-Iver thickness. 
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To state, as we have done here, that the equatiors involve ensemble-werage, 

than time-average, quantities, does not mean that i t  w i l l  not be necessary, in  

rather 

due 

course, to make the assumption ''tat ensemble averages can be approximated by time- 

averages. The important point to be made, at this stage, i s  that the equations are 

mos. secure when viewed as ensemble-average equations. 

The turbulent shear stresses are assumed to behave according to the rate equations used 

in the method for steady three-dinrensional flows (refs. 6, 7), but wi th  the convective 

derivative extended to include the time derivative: 

c 
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where ax,@= a c  given by Equation (12) of Reference 7, which l e d  to co-directionality 

of the shear stmsss "vect0r"ond the mte-of-stroin vector. The assumption af CO- 

directionality can be relaxed, i f  desired, by putting 

ax= az = 0. 

The functionr. a , a , ClMd L anr assumed to be the some fimcticms os apmar in the steady- 

%w method (Refbrences 6, 7); a2 ard L are shown in Figure 1, and a l  = 0.15. This 

assumpthn implies (a) that the ensembb-avemge qwntities w, vw can be approximated 

by the time-wemge Reynolds stresses, and (b) that time-dependence in the r e m  flow 

has a negligible effect on the structure of the turbulence*. Neither of these hypo;heses 

1 2  

- -  

has been verified exper'nnentally, and clearly there i s  an urgent need to do so. Fc- the 

present, these hypotheses have to be made in order to proceed at all, but i t  must be 

stressed that some of the cmciusions from this study may reed revision if later experi- 

mental work shows that certain underlying assumptic-s in the method are seriously in 

error. 

Method of Solution 

The governing eqiations consist of two momentum equations, for U and W, the contincity 

equation, and two rate equations for and G. This set of equations i s  h,;xbolic, and 

i s  integrated in a three-dimer6onal domain (x, y, 1 )  by means of an explicit finite- 

difference method.. The calculation scheme is illustrated in Figure 2. The overall 

scheme i s  similar to hat :)sed by Patel and Nath (kference 2); values of c i l l  the 

*The turbulent energy equation does alltw for inertia in transfer of information (energy 
from mean flow to eddy to heat), but the mshanisrn itself is not 1 funct'on of the 
unsteadiness. 
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dependent variables am calculated over wcceuiw p h ,  t = constant, and the 

calculation advances in the d i r e c t - i .  In tr.t ,wesent m u ,  h a v e r ,  the dependent 

mri&le include W d i n  oddition to U, V and T. in addition, the present 

method involves a more sophisticated numerical schemt! (Reference 8). and a more 

flexible integration domain; the height of the domain i s  aliawed to vary with x as 

well os t (Figure 3). 

Boundary conditions for the calculation consist of: -- 
0 initial profiles of U, W, uv, ~ I N  versus y for t - 0 and all x, 

at y = 1.258 , 1.256 being the local height of the 

integration domoin, which varies with b3th x and t. 

0 appropriate boundary conditions at y = 0. 

The wall boundary condition is handled in  the same way as in the steady-flow method 

(refs. 6, 7). The outer numerical calculation i s  matched to an approximate solution, 

based or; the h,w of the wall, at y /a = 0.05. 

The numerical scheme for the outer layers, 0.G 5 y / S  5 1.25, i s  equivalent 

to the one-step staggered-mesh scheme described in  Reference 8 and i s  identical to the 

scheme used in the steady-flow method (refs. 6, 7). 
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Fiw-point contril differences are used for the y-derivatives, and either 2- or 3-point 

backward differences for the x-derivatives; backward differences have to be vsed for 

b/bx, i f  the U-component of velocity i s  positive, to avoid the upstream propagation 

of informchon. 

The maximum permissible t-step is dictated by s tab i l i t y  considerations. In most situations 

the t-step i s  roughly proportional to the smallest value of S at the particular t-stotion 

usually 6 at x = 0. As a result, the computation time varies inversely as the thickness 

of the upstream boundary layer; the smaller the d u e  of 6 at x = 0, the longer the 

run. Figure 4 shcrws some typical run times on a Univac 1106 computer. For most of 

the calculations, 6x- - was taken to be 0.00444, since this value is  used in Ref. 2, 

giving a typical computatim OF about 5 minutes. 

For initial boundary-layer thicknesses much smalier than this, the run times become 

excessi.e, and a scheme was developed for sagmenting the integration domain so as to 

reduce them. if 8 increases substantially from x = 0 to x = 1 (as it generally does 

i f  B X  = is  small), the :omputation is inefficient i f  a constant t-step, determined 

fra-n 6 is used for al l  x. A continuously variable t-step would be awkward to 

work with, but it is possible to segment the calculation and use a different (constant) 

x = 0' 

step-length in each segment. In the scheme tried, segments were chosen such that the 

steplength increased by a factor of 3 from each segment to the next. The factor of 3 

meant that the integration t i i d !  in any one segment merged smoothly into that in the 

adjacent one upstream Figue 4 shws that the scheme WQS successful in reducing the 

longest computer times, but it could not reduce the shorter ones because the growth of 

the boundary-layer thickness was usually insufficient to permit more than one or two segments. 
10 



Cnnporitorr with Forward Marching Mehod 

To qualify the accuracy of the computer program, sample calculations were carried out 

for bath two-dimen..ml and swept infinite cylinder flow fields in the tim-relaxation 

mode, in which the boundary conditions are held constant and a steady-state solution is 

approached osymptoticaily for ''lorget" times. In practice, "large times" t u m d  out to 

be about 2.5 time units, where a time unit i s  &e time required for a fluid particle 

tramling with some defined chorocteristic velocity to move a distance of one chord 

length. The results were compared to solutions obtained by the mom conventional 

forwad-marching procedure and the correlation is at lea-. os good 05 that obtained 

previously by Patel and Nosh (Rekrence 2). 

Figures 5 and 6 &ow the results of a comparison between the two methods for the case 

of  flow over on infinite yuwed cyikfer, where the chordwise pressure gradient E p , / a  x 

i s  favorable over the forward part of the cylinder old adverse over the rear. In Figures 

5 and 6, a l l  lengths (x, y, 6 *) ore mode dimensionless by division by the chord-length 

of the cylinder, velocities by division by Qeo (the free -sztream v3locity at infinity), 

and shear stresses by division by 

variations of 6 , rWx and 7 

are 1.2% in rW (at x = 0.26) and 3.0% in 6 (at x = 1.0). Figure 6 shows the 

predicted chordwise and spanwise velocity profiles at x = 1, and i t  is evident, again, 

that the two methods produce n,cmrly identicol solutions. 

0 

2 
oQ0 . figure 5 shows the predicted chordwise 

The greatest discrepcies between the two solutions * 
wz 

* 
x. 

Based on these results, and similar results for two-dimensional flows, i t  was concluded 

that the computer pogrom was performing satiifactorily for flows in which the bomdary 

1 1  



:onditions are held constant wi th  time. There was no reason to suppose that the same 

would not be true also for flows with time-varying boundary conditions, md i t  wos 

decided to proceed to the calculation of fully unsteady turbulent boundary layers. 

COMPUTATIONAL EXPERlME NTS 

The properties of tim-dependent tcobulent boundary layers were studied by carrying out 

computational experiments using the calculation method described in the preceding 

sections. Five flow situations we= selected, designated Flows A through E, and 

calculations were done for each flow for a ran* of relevant parameters. Most of the 

calculati . .s were for two-dimensional flows, although an infinite-yawed-cylinder 

version of Flow A was examined ond the results are included here. Flows A and 6 were 

osciliatcy flows; Flows C and D were monotonically time-varying, while in Flow E 

th2 external flow *vas  first varied monotonically and subsequently held steady allowing 

a t~laxrti7n of t k  boundary layer towards equilibrium conditions. 

The calculations are discussed in detail below, nnd the results are presented in Figures 

; through 27. In these figures, cs before, lengths are made dimensionless by division 

by thc length of the plate on which the Flow is  developing (unity), velocities by division 

by Qeo (which i s  equal to ueo in the caM of two-dimensional flows), and shear stresses 

by divisim by pQeo (or ueo in two dimensions). Time IS made dimensionless 

by mcltipiication by 

flows a reduced frequency, w, is  defined as 

2 2 

Uea and division by the length of the plate. For the oscillatory 
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0 =2n/P 

where P is  the period of the motion in time units. If o= 2 n ,  o complete cycle takes 

place in the time taken for a fluid particle, moving with velocity Ueo, to be convect 

d the length of the plate. In the monotonically time-varying flows, o is  retained as a 

measure of the rate of distortion of the flow, i.e. l/o is a characteristic time of the 

motion. 

Oscillating Flows Over Flat Plates 

The flow A i s  defined as a free stream flow I,sciIlating harmonicoliy, according to the 

equation 

- -  - 1 + Asinwt, 
ue 
"e0 

over a flat plate. The amplitude, A, and frequence, w, were varied over a reasonable 

range to determine their effects on the response of the turbulent boundary layer charac- 

teristics to this oscillatory flow field. The initial conditions for this calculation were 

taken to be the asymptotic steady stote solution obtained as time approaches infinity 

(t = 2.5 is sufficient) for A = 0. The boundary conditions for al l  time at the entrance 

station for the boundary layer (x = 0) were set by making 6, - $Je/Ueo)-' and 

scaling the standard initial profiles accordingly. This condition, in fact, is just the 

requirement that the entrance conditions respond instantaneously to the edge velocity 

at any instant of time, i.e. quasi-steady conditions. ;he Reynolds number based on 

chord length (unity) was taken to be Id and the initial bwndary layer thickness was 

13 



.W. The computer progrom was allowed to run a few time units (t = 2  seems to be 

sufficient) in order to let transients die out and the output was generated at several 

chord pcc i t ions for several periods. Quusi-steaciy solutions were generated by selecting 

rut =constant and utilizing the forward marchir.9 nLrmical method for steady-state 

flows. 

Figure 7 shows the results for a ten-fold frequency range at an amplitude, A, of 12.5% 

and Figure 8 shows the same frequency range at an amplitude of 50?6. From Figure 7, 

i t  i s  seen that the unsteady wall shear stress anticipates the qucrsi-steady values; i.e. 

there i s  a phase lead between wall shear stress and the external velocity, Ue. Similar 

effects have been predicted for oscillatory laminar boundart layers (Reference 9), and 

for perturbed turbulent boundary layers (Reference 3). 

In the laminar case the phase lead increases with frequency, up to a maximum value of 

q/4. In the present results, however, the phase lead Is considerably smaller than this 

(see Figure 9). The phase leads predicted here are also smaller than the values calculated 

by McDonald and Shamroth (Reference 3). Their results may have been compromised by 

inadequacies in he velocity-profile model used in their integral method, and the dis- 

agreement may not put the validity of the present results in question. 

At low frequencies, a phase lead i s  apparent in 8* also; this phase lead decreases with 

increasing frequency, and at high frequencies the unsteady S* actually Tags behing the 

quasi-steady values. The average level of s", for the unsteady flow, increases with 

both increasing frequency and increasing amplitude, until the average unsteady 6* i s  

more than twice the average quasi-steady s* when AI= 0.5 and w = 15.7 (Figure 8). 
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At the 50% amplitude change (Figure 8) the phase lead in the unsteady wall shear stress 

appears to decreare more wi th  increasing frequency than at the 12.5% amplitude change. 

A peculiar skewing appears in the P curve at the higher amplitude although the shear 

stress curves s t i l l  remain symmetric about their mean values. Apparently, for this case 

the various states the turbulent boundary layer passes through at each instant of time due 

to a change in the external velocity are not reversible when the external velocity change 

i s  reversed. This iituation occurs whenever the condition of zero wall shear stress is  

approached as i s  the case in Figure 8. The 6, variation for the high frequency case in 

Figure 8 can be approximately represented by a model in which the velocity profile moves 

in lock-step with the external flow. Such a model would be valid as w-00, when 

alJ/bt would dominate the other terms in the equation: of motion. This '%high-frequency 

approximation" allows the statement U 6* = constant. This result i s  showr: in Figure 8, 

the constant having been determined for the best curve fit; i t  works equally well for the 

lower-ampIitc.de case shown in Figum 7. Whereas the displacement thickness i s  well 

represented by the high-frequency approximation, the wall shear stress continues to be 

well represented by the quasi-steady approximation, and i t  is  remarkable that i t  works 

well over such a wide ronge of both frequency ond amplitude. 

e 

Figures 9 through 12 show a comparison of the turbulent results wi th  the larinar results 

of Lighthill (Ref. 9). In Figure 9, a comparison i s  given of the laminar wall shear stress 

phase lead with the turbulent values versus the reduced frequency, u1. The turbulent wall 

shear stress phase lead i s  much reduced from the laminar values. Figure 10 shows a com- 

parison of the laminar shear stress wi th  the turbulent values vems reduced frequency, u). 

Three curves are shown for each case corresponding to three values of the argument wt. 

The values for the high frequency approximation in the laminar case when wt = n or 



w2 are identical and consac;,-ently are shown as only a dashed curve. The turbulent 

boundary layer results display the same trends as in the laminar case. The Figures 1 1  and 

12 give graphs of the displacement thickness values analogous to the Figures 9 and 10. 

Once again i t  i s  seen that the turbulent boundary layer results display the same trends 

as in the laminar case. 

A variation of the flow A i s  that of a swept infinite flat plate immersed in a flow oscillating 

harmonically in the chordwise direc5.m only, according to the equations 

We - = sin A 
QeO 

where Qe i s  the velocity magnitude at t= 0 and A is  the sweep angle. Results of this 

calculation are shown in Figure 13 for the 50% amplitude change. The curves for 6* and 
0 

(T,,,)~ have the same characteristics as in h e  two-dimensional case with the exception of 

the skewing of the chordwise wall shear stress at the higher frequency value. This result 

i s  probably accentuated by the closeness of the chordwise wall shear stress to zero. 

However, the spanwise wall shear stress, in contrast to the chordwise wall shear stress, 

lags the quasi-steady values and this phase lag apparently increases with increasing 

frequency. 
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Oscillating Retarded Flows 

The flow B i s  an oscillating retarded flow field defined by the equation 

'e = 1 + ( A ~ + A  sinotlx, 1 - 
U 

where A, = -0.2. Calculations were made for flow 6 in the same fashion as for flow A 

with the exception that the initial conditions were taken to be the steady state solution 

obtained as time approaches .nfinity (about 2.5) with A1 = 0. Figure 14 shows the 

results for an eight-fold frequency range at the trailing edge when the amplitude change, 

Al/(1 + AJ, i s  12.5% ,and Figure 15 shows the msults for a ten-fold frequency range 

at the trailing edge wbre  the amplitude change is 50%. 

From Figure 14, in contrast to the oscillating flow on a flat plate, flow B gives an unsteady 

wall shear stress and displacement thickness which lag their quasi-steady values. Further- 

more, this phase lag decreases wi th  increasing frequency. I t  appears that the average 

unsteady 

range considered. At an amplitude of 12.5% 

to zero T~ anywhere during the cycle. At the higher amplitude of 5096, however, 

becomes mry small near the "bottom" of the cycle. Moreover, and this i s  most interesting. 

the quasi-steady boundary layer would actually separate during this part of the cycle 

(Figure 15). Thus the unsteady boundpry layer manages to remain attached ( fw > 0) 

throughout the cycle, even though the maximum instontaneous retardation would be 

great enough to cagse separation if i t  were maintained for a long time. I t  i s  significant 

that, in the present case, the effect of time-dependence i s  to delay the anset of 

S* i s  about the same as the average quasi-steadi s*  for the entire frequency 

the boundary layer does not come close 

rw 
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vanishing T~ whereas the opposite occurs in the case of the oscillating flat p!ak (Flow A), 

In that flow, the wall shear stress, at the bottom of the cycle, would eventually decreau 

to zero i f  the amplitude were increased sufficiently; on the other hand, quasi-steady 

calculctions wou!d never indicate separation unless the amplitude were so large as tc 

stagnate the exrctmrrl flow. 

To return to Figure 15, over the wrt nf the cycle where the quasi-steady calculation 

indicates separation, the quasi-steady values of 6* are very large. The unsteady values, 

in contrast, are well behated throughout the cycle. Figure 15 shows phase Dags similar 

to the lower amplitude case in Figure 14 

conditions are excluded, i t  is remarkable how good an approximation the quasi-steady 

wall shear stress values are to the unsteady values in a retarded fiow field for a wide 

range of both frequency and amplitude. The results of the high frequency approximation 

for 6* (Ue8* = constant) are also shown in Figure 14, and as in Figure 8 the agreement 

wi th  the calculated results i s  excellent. 

Again, i f  points close to zero wall  shear stress 

Monotonically Time - Varying Flows 

Computational experiments were performed for three flows in which the external velocity 

varied monotonically with time, instead of sinusoidally as in Flows A and 6.  The three 

flows, were two-dimensional, and were defined as follows: 

Flow C: 
2 U = 1  - wtx 

U 
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Flow D: 

Flow E: 

U 8 = 1 + wt(1-X) 
U 

'f 
e 

U 

e U 
= 1 + ot(1-x) for O s  t 5 - 

0 

0 
e U 

Only positive values of w and t were considered, and so al l  three flows involved 

deceierating external flows. In Flow C t! external velocity distribution "pivoted" 

about the leading edge of the plate (x 0), and this flow might be regarded a5 an 

idealized model of the flow in a channel with one wall pivoted and rotating outwards. 

In Flows D and E the external velocity distribution pivoted about the trailing edge of 

the plate (x = l) ,  and these f laws might be regarded as idealized models of the flow 

over an airfoil pitching continuously (Flow D), or pitching up to some positive angle of 

incidence and then being held still (Flow E). 

The main objective was to determine the onset of zero wall shear stress and to examine 

:he variation of i t s  point of onset with the rate of distortion of the external flow, 0 )  . 
Small values of UJ indicate slow distortion of the external flow, and large values indicate 

rapid distortion . As 0)-0, steady-flow conditions ure approached, and fini;= values 

of a t  (i.e. finite values of 3lJiax)are mached only for "long" times: t -00. 

Steady-f:ow calculations, done for comparison with the time-dependent ones, could be 

performed either by the time-relaxation process or by a forward-marching procedue. 

In most cases the latter method was used for reasons of machine economy; the run-time 
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necessary to reach a steady-state solution in a time-relaxation calculation becomes long 

becouse of the long convection times associated with the small velocities in the flow 

close to separation. 

The second objective was to examine the general character of the solli? 

shedding some light on the behavior of the unsteady turbulent boundary 

a point of zero wall  shear stress. 

1 the hope of 

7pproach ing 

7 
80 

The calculations for a l l  three flows were done for a Reynolds number of 10 based on U 

and the length of the plate (unity). The initial conditions at t = O  corresponded to steady, 

flat-plate f h w  with Ue= Ue, and on upstream boundary-layer thickness, I t  x = 0 of 

0.00444. For Flow C, the external velocity at x = 0 was conLtant for a l l  time, and the 

assumption of cmstant boundary-layer thickness at that point seemed reasonable and this 

was made. However, in Flow 0, Ue at x = O  i s  not constant but increases with time, and 

the problem of constructing reasoncble initial cmditions there presented a matter of some 

concern. I t  was decided to try to determine the sensitivity of the solution to changes of 

the initial conditions at x = 0. Calculations were doma for a few representative cases 

wi th  initial conditions as follows: 

(a) flat-plate velocity and shear-stress profiles with constant boundary layer 

thickness ( =  0.00444), 

(b) flat-plate velocity and shear-stress profiles wi th  boundary layer thickness 

yo.  2 
decreased as ( Ue/us to account for the change in local kynolds 

0 

number, 
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(c) velocity profiles, with boundary layer thicknsss of ' W 4 ,  generated by 

addkg a constant increment of velocity ( -  'J - U ) at a l l  values of y, to 
e =o 

approximate conditions appropriate to o - 30; the .hem stress profiles for 

this case were identical to those in (a) except in the immediate vicinity of 

y = ?(where fw --OO). 

In al l  the cases iun, vanishhg wall shear stress was predicted to .\ccur, at x = 1, at 

values of w t  which were within 1% of each other for the three sets of starting conditions. 

The calculations indicated larger boundary-layer thickness (up to 36% larger) when (c) 

was used, compared to (a) cnd (b) .  hwever, these larger values of 6 occurred at small 

values of x ,  and the differences were much smaller near x = 1. Nearly identical results 

were obtained with (a) and (b); the predicted values of 6 were the iame to within 1% 

for a l l  values of x greater than 0.02. 

Thus i t  appeared that tlle solution \vas fairly insensitive to the upstream starti,ig conditions, 

and that generality of the conclusiors from the present work was unlikely to be compro- 

mised by an unfortunate choice. It was decided that the assumption of constant 6 was 

reasonable, and this was made in al l  the subsequent calculations. 

Figure 16 shows some results for Flows C and D. The calculations were run until the 

wall shear stress, T ~ ,  just reached zero at x = 1, and the value of wt at this nstant was 

. The ratio of 
'"e 

recorded; wt i s  equal to the instantaneous velocity gradient - - 
ax 

0 to its value when w - c O  i s  plotted as a function of w in the left-hand diagram. 

The results show that, for both rlow C and Flow G, T~ vanishes, at >. =- 1, ot a higher 
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value of wt  than in quosi-stedy flaw; in o h :  WQ&, there is a delay in the omot oi 

vanishing T ~ .  In Flow f, (cut), = 0 increases to c value some 509b greder th that 

for quasi-steody separation, and then remains approximately constant fw ui > 0.6. In 

Flow D, the value of (&ITw = 0 increases cootinuousiy with increasing IN, md then is 

a substmtial delay in vcrrihing T~ for large vahms of w. For example, .u-th u] = lC, 

(wt), = 0 i s  same five times p a t e r  thar it is when 4 (quasi-steady). At kLx- his:; 

values of wt, the streamwise gd ien ts  are so large that the validity of  the boundary- 

layer approximations becomes questionable. For th is  m m ,  the results for Flow D, 

with u: > 8, should be treated with caution, d the;# are shown by dashed curves in 

Figure 16. The trend suggests that, for high enough values of (L; vanishing wcl l  shear 

stress might never occur. 

One of the effects of tim-depemlence i s  to modify the streamwise pressure gradient, 

ap/ax. For ;low over an infinite yawed cylhder, Euler's equation for flow in the 

external stream takes the farm 

+ u  e -  '"e + -- 1 3~ = o  e a U  

at 5 

bX 

The equation shows that b p / a x  

CI the sign of dU,' a t .  The qwntity R, where 

can be either hcrcased or decreased, depending 

x = - (  dUe/bt) 1 a p \  I((; T- 

i s  o measure of the contribution of . , I  '. .'te total pressure gradieot. 
z- 
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Posit:.:e \:iiiqs cf R cwrespond to cases where 

more advet .e, r;eFtive values to cases where the advecse pressure gradient i s  alleviated. 

+ / a x  i s  increased, i .e. becomtt 

The r' jht-bnd diogrmc in Figure ?6 shows the results for Flows C, D ploted versus R. 

Act. J ly ,  R i s  s func!ion of x, and the va:;Ts plotted correspand to x = O.S. Flow 

D generates -five values of R and the delay in the onset of zero fW takes ploce in 

an environment where the adverse pressure gradients ore alleviated by the effocts of 

time-dependence. On the other hmd, Flow C generates positive values of R and, 

while the effects are less marked than in Flow D, there i s  ogain a delay in vanishing 

and it occurs in the face of an increosirqly adverse pressure gradient. fndeed, 

i s  some 300 times grmter 

*W 

at h e  highest value of o considered the value of ap /bx  

t h n  was necessary to cause separation of x = 1 in steady flow. 

The inference i s  that the augmentation or alleviation of + / a x  does play a part 

in the e f k t  of time.--1ependence on vanishing wall shear stress, but that, at least 

for fiows similar to the present ones, it i s  not the only factor to be considered. The 

fact that a delay in vonishing rw occurred eveti when &I / a x  was increared 

suggests that time-dependencc influences the flow directly as well as via + / i)x . 
It might also be worth mentioning hat, regardless of the sign of aUe/ 

effect on bp/ ax  , the point of vanishing rw can move upstream only if aU/ 2 t 

in the vicinity of the wall i s  locally negative. 

t and i t s  

In Figures 17, 18, 

x for a low (0.25j and a high (31.4) valge of o . 
of time, and the instantaneous value of at, where 

results of two quasi-steady calculations are also plotted for comparimn. In one, the 

value of a t  i s  the same; in the other, the value of a t  i s  reduced such that separation 

7, and 6*, from the calculations for Flow C, are plotted versus 

The results correspond to the instant 

T~ just vanishes at x = 1. The 
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occurs at x = 1. With at the same, separation of the s t d y  boundary layer occurs 

ahead cf x = 1 (vanishing wall shear stress i s  delayed in the unsteady case). In order 

to obtain separation at x = 1 ,  it i s  necessary to reduce a,t, i.e. to reduce the stream- 

wise adverse pressure gradient. 

Figures 19, 20 show the corresponding results for Flow D, again for a low and a high 

value of o . It w i l l  be noted, in Figure 20 especially, that the values of rW for the 

h a  quasi-steccdy runs are substantially different from one another particularly at low 

values af x. T h i s  difference i s  a consequence of the different fevels of Ue between 

the two quosi-steady fiows; in Figure 20, for example, the two values of ot used in 

the quasi-steady calculations are different by a factor of 9. Plotting r /( p U =), 

rather than rW/( pU2 ) would have reconciled the results for s m a l l  x, bot would 

have obscured important trends near separation. 

2 
W 

A l l  four sets of results (Figure 17 through 20) exhibit essentially bhe same characteristi-.s. 

The steady-flow separation i s  associated wi th  increasing values of -( 

as the separation point i s  approach, reminiscent of the square-root singularity observed 

a rW/  ax), 

in the laminar case. Correspondingly, 6* increases rapidly, again, in a quosi-shgular 

mamer. In contrast, in the time-dependent cases, the approach to zero wall shear stress 

i s  more gradual: the volue of -( ar,/bx) -- decre-es rather than increases with x. 

The results suggest thot the delay of vanishing rw i s  directly linked to the absence of 

the square-root singularity (or something close to it) in the rW(x) variation. The 

curves of 6" also depict important differences. Particularly at the higher values of 

a, S* i s  smaller and has a markedly smaller slope as t goes to zero. In short, 
W 

there i s  no evidence of singular behavior, and thus the results support the views of 

Sears (Reference 10). It was not possible to continue the calculations beyond the 

point of instantaneously zero wall shear stress, and so the question of the existence 
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I 

of a singularity downstream of this point cou!d not be addressed. Neither could :.aI- 

culations easily be done for h e  shotion where the point of zero T~ i s  moving &w1- 

stream. 

predict that the singularity lies at,eod of the point of varishing f W .  

For this case, the Sean model (Reference 10) of unsteatiy separation would 

The results presented so far, for Flows C .  0,  al l  correspond to the instant of time ci 

which tW = 0 at x = 1 .  

movement of the point of vanishing 

Further studies were conducted to examine the upstream 

T to maller values of x. 
W 

Figure 21 shows curves of zW versus x for increasing time; these are for Flow D with 

As stated before, xW increases rapidly with time, for low values of x, o = 1.57. 

because ;i the increase of Ue. When 

points of the integration mesh, corresponding io x = 1, was dropped, and the calcula- 

tion was continued to largervolues of t. 

rW fell to zero at x = 1, the row of node 

Additional rows of node points were dropped as the point of zero T 

Figure 22 shows the corresponding curves of 8* versus x. It w i l l  be noted that, up to 

a time t = 1.9, E* i s  independent of time for x less than about 0.2. This result pro- 

vide; indirect confirmation that the assumption of constant 6 (and therefore nearly 

constant a*) at x = 0 was a reasonable one. It w i l l  be noted, also, that the curves 

become progressively steeper as the point of zero T mover forward. It i s  not clear, 

at this stage, whether a singularity i s  being re-established, or whether this effect i s  

due to numericoi error as the restilt of there being fewer node points left in the inte- 

gratior. net. 

moved upstream. 
W 

W 

Figure 23 illustrates the velocity and shear stress profiles calculated for Flow D (with 

o = 1.57) at x = 0.67. The wall shear stress vanishes at x = 0.67 when t = 1.93, 
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i .e. when at i s  approximateiy 3. Quasi-steady seporation would occur at x = 0.67 

only if at were reduced to 1.55. The profiles corresponding to this latter situation 

ore shown for conprison. It i s  interesting to note that the velocity profiles ore similar 

in thicknesr and shape, the on!y t i  mificant difference being the edge velocity, U - 
e' 

thus plots of LIlU versus y would look almost identica!. Fu:thermore, '. ;hear 

stress profiles ore similar in shape and would fall close 13 one another i f  plotted in 

terms of T/( p'J e). 

e 

2 

This similarit). in shape i s  surprising in view of the difference i.1 behavior of Q (x) 
W 

and S*(x) as the paint where fw = 0 i s  approached. 

The same time-dependent flow (Flow D, wi th  

approximately one. The profiles corresponding to this condition are shown in Figure 23 

for compzrison both wi th  the quusi-steady results, ot the some u t ,  and wi th  the results 

for Flow D at the later time, t = 1.93. The comparison shows that the two velocity 

profiles w i t h  the same edge velocity, Up, are substantially different in thickness and 

shope. Moreover, the maximun. shear stress i s  quite different. 

= 1.57) reaches at = 1.55 when t is 

Thut it would appear that the similarity between time-dependent and quosi-steody flows 

i s  closest when they are compared at the points where qW = 0 in both, even though 

the edge velocities are then different and even though the upstream histories of the two 

flows are radically different. 

distribution appears to be largely irrelevant; i t  does not ensure :he same upstream history 

ond does not ensure even approximate similarity between the !a0 flows. 

Conversely, development in \he same external velocity 
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Figure 24 shows the variation w i t h  time of ( I ~  ond 

o = 1.57; 

for comparisor), i s  ider tical to Flow D for 0 6 t 

i s  frozen w i t h  ot = 1 .Si*. In Flow E, (I goes to zero at t = 1.47. 

S* at x = i, tor Flow 0 with 

goes to zero when t = 1.37. Flow E, the results of whic5 are shown 

1, but for t > 1 the external flow 

W 

Figure 25 shows the forward movement of the point of zero ( I ~  for Flows D, E with 

w = 1.57, and also wi th  a higher value, o = 31.4. In Flow D the ex tmml  velocity 

gradient increases continuously, and the F i n t  of zera 4 mves foward continuously 

at least as far as x = 0.5. 

moves forwa: '. In the case of Flow E, the point of vanishing T~ maves forward to 

the position of the quasi-steady separation point for the particular wlue of 

here, oround x = 0.67. Thus for t > 1 when o =  1.57, and for t > 0.05 when o = 31.4, 

the external velocity distribution, U (x), i s  frozen and the movement of the point of 

zero c i s  just part of the relaxation towards steady-state conditio,?s. It i s  inter- 

esting to note that the time scale describing this relaxation process appears not to 

be very depender,t on the value of o corresponding to the previous unsteady external 

flow. 

to settle down to the new steady-state situation, nearly 4 time units, which (at this 

value of a t )  i s  roughly five times the time taken for a f\uid particle in the external 

flow to be convected from x = 0 to x = 1. 

W 

The higher the value of G: .. the m i e  rapidly this point 

u t ;  

e 

W 

I t  i s  also interesting to note the comparatively long time cecessory for the flow 

During the relaxation phase of Flow E, while the external velocity distribution i s  

frozen, the character;stics of this flow have ta change from those appropriate to 

time-varying conditions to those appropriate to steody-state conditims. 

process i s  illustrated by Figure 26 which shows the variation of T~ and &* with 

x and t for Flow E with o = 1 .!P. The shape of the T ~ ( X )  curves ctanges from 

one in which -( 

with x. At the same time, the curves of 

of zero T~ i s  approuched . 

This 

a.r,/ a x) decreases with increasing x to one where i t  increases 

6* versus x become steeper q s  the point 
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Figure 27 shows the corresponding Velocity and shear stress profiles. It i s  interesting to 

note how the velocity profile approaches that for steady-state separation by a combination 

of retardation and thickening which leaves the average velocity gradient, aL/ay, nearly 

constant. The maximum shear stress increases far more than the wall shear stress de- 

creases. It increases roughly in proportion to 6, rathsr than to 6 which would be 

predicted from mixing-length theory for a boundary layer wi th a constant bU/ay. This 

departure from a mixing-length type correlation between the shear stress and the velocity 

gradient i s  to be expcted in this flow because of the large streamwise gradients. 

2 
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CONCLUSIONS AND RECOMMENDATIONS 

The method deve!oped here for calculating time-dependent turbulent boundary layers in 

incompressible flow past infinite yawed cylinders is  a logical development from the work 

of Nash c7d Patel on steady three-dimensional turbulent boundary layers. One of the 

space dillit nsions of the integration domain i s  replaced by time, while the three- 

dimensionaI.ty of the velocity and shearstress vectors i s  retained; U, V, W, 

are determined in the domain (x, y, t). 

5 qx, 

The empirical content of the method, the dissipation length, diffusion function and the 

ratio of the shear stress to the turbulent kinetic energy, are carried over from the steady- 

flow methods. The assumption is made that the original forms of these functions still 

hold, and the additional assumption is made that the ensemble averages in the time- 

dependent equations can be approximated by time-averages. These assumptions have 

not been verified experimentally, and until they ore, the conclusions of the present 

study cannot be accepted without reservation. However, the aim has been to establish 

trends rather *an definitive values, and it i s  not unreasonable to expect that these 

trends w i l l  survive possible changes in the empirical irput which are called for as the 

result of further experimentation. 

I t  i s  quite evident, from the results shown, that there are significant unsteady effects on 

the turbulent boundary layer particularly in h e  regime of approaching zero wall shear 

stress. For the oscillatory cases examined, even for the lowest frequencies calculated, 

there were significant effects on the displacement thickness. A small degree of phase 
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shift was observed between the wall shear stress and the external velocity. However, 

the level of wall shear stress differed l i t t le  from quasi-steady values, corresponding to 

very low frequency, until zero wall shear stress was approached. 

The effect, on the boundary layer, of time-dependence in the external flow is complex, 

and cannot be represented merely by a change of the streamwise pressure gradient. For 

some flows the onset of vanishing wall shear stress i s  delayed, compared with the 

equivalent steady flow, not only when the adverse pressure gradient i s  alleviated by 

the unsteadiness, but even when it is increased. The delay was clearly demonstrated 

by the monotonically time-varying flow examples where the approach to zero wall 

shear stress conditions was examined. Unsteady turbulent boundary layers were able to 

penetrate deeper into adverse pressure gradients (i.e. delayed onset of zero wall shear 

stress) than could he accounted for by quasi-steady calculations. For some flow cases, 

the differences were quite large at high frequencies. Ir. addition, the unsteady dis- 

placement thickness and wall shear stress approached the zero wall shear stress 

ccndition quite differently from the approach of the corresponding quasi-steady values 

to separation. The results support the contention of Sears (Reference 10) and others that 

the point of vanishing wall shear stress, in an unsteady boundary layer, i s  not a singular 

point. Furthermore, the results suggst that the fact that i t  i s  not a singular point has 

a lot to do with the delay in vanishing wall shear stress mentioned earlie).. 

This study did not address the question of separation, md we have been careful to avoid 

any suggestion that the point of vanishing wall shear stress i s  a separation point in 

unsteady flow. Indeed, i f  separation, in the sense of flow detachment, i s  associated 
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with singular behavior of the displacement thickness, ths present results indicate that 

separation was always downstream of the point of vanishing wall shear stress cor the 

flows examined. Thus it would appear that separation was delayed even more by the 

effects of time-dependence than was the onset of vanishing wall shear stress. There i s  

an urgent need for a study of the events surrounding actual separation, i.e. detachment, 

of the unsteady turbulent boundary layer. With certain modifications the present 

calculation method could be used to examine the development of the flow between the 

onset of zero wal I shear stress and the onset of separation. 

This study has drawn attention to the strengths and also to the weaknesses of the present 

calculation scheme. The uncertainties ussociated with the flow model have already 

been mentioned', but a few comments are in order concerning the numerical scheme for 

integrating the governing equations. The explicit scheme used here is  well tried, 

having been employed in a range of three-dimensional steady bout:dory-layer calculations 

as well as in the present unsteady-flow method. There are deficiencies in the schenie 

froci the standpoint of precision, particularly in the inner-layer calculation; however. 

the numerical precision i s  probably at least as good as the accuracy of the empirical 

flo* model. The major disadvantage of the present scheme lies in the long computarion 

times required. It has not been possible to explore important low frequency ranges 

because the calculations became too expensi. 3 ,  nor was i t  possible to treat flows where 

the boundary-layer thickness at the upstream end of the domain was small. There i s  an 

urgent need to improve the economy of the present method, and i t  would seem that this 

can be done only by replacing the explicit numerical scheme by an implicit one which 

makes no demands on step size for stability. The conceptual framework of a suitable 
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implicit scheme has already been established. Be that as it may, the existing method 

represents a very useful tool, as i t  stands, and a number of further investigations i ' . n  be 

made even before the implicit method i s  in an operational state. The tools developed in 

this analysis should be used to investigate the differences between the turbulent boundary 

layer produced by an unsteady free stream but stationary wall and a steady free stream 

but non-stationary wall. Of considerable interest would be the utilization of these 

tools to calculate unsteady turbulent boundary layers which correspond to the experimental 

investigations being conducted by the U.S. Army Air Mobility R&D Laboratory and the 

Naval Postgraduate School in Monterey. The cmparison of these experimental data 

with the theoretical values wwld  not only serve to elucidate unsteady turbulent boundary 

layers but wouid also point out ways in which the mathematical model might be improved. 

Aside from these fundamental investigations, the tools developed in th i s  research program 

are ready to and can be utilized to great advantage in studying the practical problem of 

pitching airfoils and dynamic stall. In particular, an investigation can be carried out 

on the question of l i f t  coefficient overshoot wi th  regard to when and how does separation 

occur. Related problems which can be studied are the effect of frequency on displace- 

ment effect and the resultant effects on pressdre dist-ibution. It i s  entirely possible that 

current tools for calculating the unsteady tLvbulent boundary layer can shed some light 

on the bursting of the separation bubble. The capability now available for unsteady 

turbulent boundary layers coupled with advanced methods for treating the potential flow 

could well answer the question of how the boundary layer rolls up after separating from 

the pitching airfoil. 
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The analysis and computer program can and should be extended to compressible flow. 

When that is  accomplished, the required technology for examining the very complex 

problem of shock-unsteady tuhulent boundary layer interaction would be in hand. 

SUMMARY OF CONCLUS!ONS 

1.  There are significant unsteady effects on the turbulent boundary layer particularly 

in the regime of approaching zero wall shear stress. 

2. For the retarded free-stream flow case, the effect of time-dependence i s  to delay 

the onset of vanishing T~ whereas the opposite occurs in the case of the oscillating 

flat plate. 

3. Unsteady turbulent boundary layers were able to penetrate deeper into adverse 

pressure gradients whetlrer or not the pressure gradient was alleviated by unsteady 

free stream effects (i.e., onset of zero wall shear stress was delayed in either case 

compared to quasi-steady turbulent boundary layers). 

4. The unsteady displacement thickness and wall shear stress approached the zero 

wa l l  shear stress condition quite differently from the approach of the corresponding 

quasi-steady values to separation. 

5. In contrast to the steady-flow separation, associated with increasing values of 

-(~T,/?x), the time-dependent approach to zero wcl l  shear stress i s  characterized 

by -(aTw/ax) decreasing. 
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6 .  I f  separation, in the sense of flow detachment, i s  aswciated with singulai behavior 

of the displacement thickness, the present results indicate that separation was 

always downstream of the point of vanishing wall shear stress for the flows 

examined . 
7. Regardless of the s i g n  of bUe/bt and its effect on bp/ax, the point of vanishing 

T,,, can move upstream only i f  bU/bt in the vicinity of the wall i s  locally negative. 

8. For F’3w D, the solution was fairly insensitive to the upstream starting conditions 

allowing the assumption of 7 constant in i th l  boundary layer thickness to be made. 
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Figure 2. Schemiitic Representation of the Method o i  Calculation 

36 



c 8 0 
0' d 

x 

37 



60 

50 

40 

30 lime 
(Minutes) 

20 

10 

0 

Number of Segments: 
1 (NoSegmentat' 3)  

I 

I I 1 I I I 
0 0.001 0.002 0.003 0.004 0.005 0.006 

8 ,  = O  

Figure 4. Computation lime for a Typical Calculation 

38 



.0030 

-0028 

.W26 

.0024 

.0022 

.0020 

.#I8 

.a16 

.W14 

-0012- 

.0010- 

.OW8 

.OOM 

*ow 

.0002 

30' Swept Infinite Cylinder 

Time-Relaxation Solution (t = 2.5) 
e e 6 8 e Forward Marching Solution A 

- 

- 
- 
- 
= 

- 
- 
- 
- 

- 
.- 

- 
- 

Figure 5. Comparison of Time-Relaxation Results with Forward 
Marching Results for a 30' Swept Infinite Cylinder 

39 



30° Swept Infinite Cylinder, X = 1.0 
Timadelaxation Solution (t = 2.5) 

@ Q @ Fowod Marching Solution 

Y h  

.026 

-024 

.022 

.020 

.018 

.016 

.014 

.012 

.010 

.008- 

. J06 

.004 

.002 

0 

- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 

.'I .; . 3  .4 .5 .6 .7 .8 .9 1.0 1 . 1  1.2 



0 

11 

X 

rr) 

. 
c 

. 
$! 

t -  

41 



x 
V 
C 
Q) 
3 
U 
Q, 

LL 
s 
0) 

L 

.- 
I 
? 
? 
I + 

0- ; 
.+’ 1 i 

4? 



0 

II 
X 

rr) 
(Y 

c 

* 

c 

I 
I 
I 

X . I  
t i l  

$ 1  

S I  
$ 1  
3 1  0 

$ 1  
: I  
? I  

0 

$ 1  8 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

43 

0. 



c 
C 
Q) 

3 
- 
f! a c 

- 1 I 1 1 1 1 I I , I1 

0 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0 

b 

0 

-3  D 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

. i  
i 
i 
i 

i 

e! 

d 
I 

44 



45 



. 
X 
0 
L 

5 I' 

I ' 3  0 

1 - i  rrc 

I 
I 
I 
I 
I 

x 
0 
C 
@ 
3 F 
LL 

I 

I 

s I a, 

i 
I 

I 
I 
I x, x I 

I 
I 
I 
I Q) 

I $ 
x 
V 
C 
Q) 
3 
0 
L i LL ! F 
0 

i 
P I tx 

I 

i 
i 
i 
I 
I 
I 
i 
i 
i 
i 
i 
i 
i 
i 
i 
I 
I 

i 

I 

1 
I 

0 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

\ 
cg c 

46 



0 

I1 
X 

c. 

I 
- 1  

C .- 
I m 
I q o  + 

IC1 
II 

I 
I > I I 0 I 

1 
# I 

)\ I 

I 
I 

I 

m 
c 

I ' I  

47 



I' 

48 



L 

0 

II 
X 

d 

II 

c 

. . 
c a . 

cy 
I 
II 

a* 

3 

a 

.. 
X 
A 

C .- ul 
c 

+ 
I'r 
-4- 

I 1  

0 
Y 

c 

*' I I 

--- - -__ 

- -- - - - -_____ 

$! 
0 * 

c 

'\ I 
0 ?g  . 

> 
0 

49 



0 

II 

3 
I- * 
3 

0 
II 

3 
c 
2 
2 v 

0 

t 
a -- 
I 6 

I 

3 

0 * 

0 
c) 

i 
t 

,I 
0 c 

0 
Iv 

0 
c 

0 

c5 
X 
I 
c 
W 

c 
3 + 
c 

II 

L 

2 
0 

50 



6* 
7W 

.ox 

0032 

,028 

- 
- 
- 

1 -(at)  x 
u e  

U e  
Q Unsteody, (x) - 

- =  

C - 
r w  = O  

B Steady-State, same ut, 

t Steady-Stute, same (x) 

=W 

l . ,  .251, (ut) = -658 

different (x) 

r w  = o  

=w = o  
, different rot 

=w = o  

i 

X 

/ i- / 

1 .O X 

Figure 17. Wall Shaw Stress and Displacement Thickness Distribution 
for Flow C at Low Frequency 

51 



s* 

‘ w x l o  t t 

-- - 1 - (ut) x U e  

Ue 
0 

w=O = 
0 Unsteady, (x) = 1 .O, 0 = 31.416, (ut) = O  

= w  

0 Steady-State, same at, different (X) 

x Steadydtate, same (x) 

r = o  

= 0, di fferent o t 

W 

T W  

Figure 18. Wall Shear Stress and Displacement Thickness 
Distribution :or F!ow C at High Frequency 

52 



-036 

" e  - = 1 +ot(1 -x )  
ut3 

@ Unsteady, ( x )  
0 

= l . 8  -251, (ut) = 1.218 = O  = O  
= W  % W  

0 Steady State, same ut, different ( x )  

+ S t e d y  State, same (x) 

= O  

+, different ut 

* W  

f W  

Figure 19. Wall Shtar Stress and Displacement Thickness 
Distributiop for Flow D at Low Frequency 

53 



? ,  
x 10 

T W  

.010 

.009 

.008 

.007 

.006 

.005 

.004 

.003 

.002 

.001 

0 -  

- -  - 1 + o t ( 1  - x )  Ue 

Ue 
0 

- 
- 
- 
- 
- 
- 
- 
- 
- 
= 

= l . ,  a =  31.416, (ut) = 8.61 = O  = O  0 Unsteady, (x) 
T W  r W  

0 Steady State, same at ,  different (x) = 
z W  

x Steady State, m e  (x) different a t  
T =o’ 

W 

.040 

Figure 20. Wall Shear Stress and Displacement Thickness 
Distribetion for Flow D at High Frequency 

54 



c 

U 
3 

- 
n 
X 
I 
L 
Y 

c 
3 + 
L 

II 

X 

0 
c 

X 

0. 

0 

1 
a0 
0 

h 

0 

9 
d 

u) 

0 = x  

* 
d 

m 
0 

N 

0 
. 

c 

0 

0 

55 



h 
v) . 
c 

II 
3 

. 
h 
X 
I 
c 
W 

c 

3 + 
c 

II 

0 

z7 

0 

m 
0 
d 

cv 
0 
d 

c 
0 v) 

c 
0 9 0 

O *  
Go 

56 



0.07 

0.06 

0.05 

0.04 

Y 

0.03 

0.02 

0.01 

0 

L 
'\ 
\ \  

Figure 23. Velocity and Shear-Stre,:. :rofi!es at x = 0.67; 
Comparison Between Flow :., .~d Quo-; -Steady Flow. 

57 



0.0: 

6 "  

0.02 

c.0; 

0 

1.5 

T M  

1 .( 

c.5 

U 

e 
U 
8 =  1 + o t  (1 - x )  

0 

Flow D \ I '  

Flow E ----- 
(both with 
a= 1.57) 

\ 
I \  I 

0.2 0.4 0.6 0.8 1 .o *1.2 1.4 1.5 
Time, t 

Figure 24. Development of Displacement Thickness and Wall Shear Stress at x = 1 

58 



d'- 

I 

0 
0 
c 

P 

n 

c 
u 

r4 i! 
i= 

- 

0 

n 
X 
W 

59 



x 
? 

Y 

‘0 

X 

w 
d 

0 

0 

N 

0 

c 

0 

0 

c3 
0 
d 

u) 
h( 
0 
0 

c 
0 v, 

c 

0 d 
d *a 0 

60 



0.07 

0.06 

0.05 

0.04 

Y 

0 .Of 

0.02 

0.01 

/ 

Figure 27. Development of Velocity and Shear-Stress Profiles at ~50.67; 
Flow E (a=: 1.57, Frozen When t = 1 .O) 

61 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

J. G. Hicks and J. F. Nash, "The Calculation of Three-Dimensional Turbulent 

Boundary Layers on Helicopter Rotos, 'I NASA CR-?845, May 1Wl. 

V. C. Patel and J. F. Nash, llSome Solutions of the Unsteady Turbulent Boundary 

Layer Eqclations, 'I IUTAM Symposium on Unsteady Boundary Layers, Quebec, 

Canada, 1971. 

H. McDonald and S. J. Shamroth, "An Analysis and Application of the Time- 

Dependent Turbulent Boundary-Layer Equations, '' AlAA Journal, Vol. 9, b. 8, 
August 1971, pp. 1553-1560. 

P. Bradshaw, "Calcuiation cf  Boundary Layer Development Using the Turbu ler t 

Energy Equation. VI Listeady Flow, 'I NPL Aero Report 1288, Feb. 1969. 

D. E. Abbott and T. Cebeci, "The General Analysis of Unsteady Boundary Layers - 
Laminar and Turbulent, I' in Fluid Dynamics of Unsteady, Three-Dimensional and 

Separated Flows, Proceedings of a Project SQUID Wo+z:hop, Georgia Institute of 

Technology, June 10 - 11, 1971, Ed. by F. J. Marshall. 

J . F. Nash and V. C. Patel, Three-Dimensional Turbulent Boundary Layers, SBC 

Technical Books, 1972, 

J. F. b!as)i and V. C. Patel, "A Generalized Method for the Calculation of 

Three-Dimensional Turbulent Boundary Layers, I' in Fluid Dynamics of Unsteady, 

Three-Pimensional and Separated Flows, Proceedings of a Projeci SQUl D Workshop, 

Georgia Imt;tute of Technology, June 10 - 11, 1971, Ed. by F. J. Mar:'iall. 

J. F. Nash, "An Exp l ic i t  Scheme for the Calculation of Three-Dimensional 

Tur'.ulent Boundary Layers, I' J. Basic Eng. 940, p. 131, March 1972. 

62 



REFEENCES (Con!'d) 

9. M. J. Lighthill, "The Response of Laminar Skin Friction and Heat Transfer to 

Fluctuations in the Stream Velocity, " Proc. Roy. SOC. A224, p. 1, 1954. 

10. W. R. Sears, "Unsteady Boundary-Layer Separotioti, 'I IUTAM Symposium on 

Unsteady Boundary Layers, Quebec, Canada, 1971 . 

63 


